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9.1 Golden-ratio search 
The problem at hand is finding the maximum of a real-valued function f(x) for a real variable x. Suppose we want to 

find a maximum on the interval [a, b]. 

In finding a root, given an interval [a, b] where f(a) and f(b) have opposite signs, we can find a sub-interval by 

finding the mid-point c = (a + b)/2 and choosing a sub-interval based on the sign of f(c). When trying to find a local 

maximum of a function f(x), evaluating the function at a single point does not allow us to constrain which sub-

interval the maximum is on; for example, if we knew f(a), f(b) and f(c) as follows, 

 

then we know nothing about where a local maximum may exist on the interval: it could be either to the left or the 

right of the center, as are exemplified here: 

 

If, however, we divide the interval up into four points, then we can get some more information; for example, 

dividing the interval into three equal sub-intervals and evaluating the function at both interior points, we may have 

one of two scenarios: either f(c1) > f(c2) or f(c1) < f(c2), as shown here: 

 

In the first case, we are guaranteed that a local maximum must be on the sub-interval [a, c2], while in the second 

case, we are guaranteed that a local maximum must be in the sub-interval [c1, b]: 
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Thus, a reasonably trivial algorithm is, given [a, b]: 

1. While b – a > step, 

a. calculate and set  1
1 3

c a b a    and  2
2 3

c a b a   , 

b. if f(c1) > f(c2), set 
2b c , 

otherwise, set 
1a c . 

2. Return whichever is larger: f(a) or f(b). 

There is only one weakness in this algorithm: at each step, we must perform two function evaluations instead of just 

one, even though the older points overlap the new sub-interval. For example, suppose that with the first step, we find 

that the maximum is on [a, c2], in which case, on the new interval, we must find two new points c1 and c2 and 

evaluate the function at those two points: 

 

Note that we have already evaluated the function at the old value of c1, but we must calculate two new values of c1 

and c2 using the smaller interval. 

Instead, notice what happens if divide the interval into ratios 4:2:4 instead of 1:1:1, we get the following: 

 

Notice that the new c2 is very close to the older c1? Ideally, however, we would like to have the two coincide. 

Suppose that we have a value 1

2
1   such that  

 

 

1

2

c b b a

c a b a





  

  
 

The width of the interval was originally b – a, but after one step, the width of the interval is now  b a  . Suppose 

now that we determine that the new interval is [a, c2]. In this case, the two new interior points are: 

    

 

2

2

1

the old  from
the first step

2

2

c

c a b a b a

c a b a

 



    

  

 

We want the old c1 to equal the new c2, or 

   2b b a a b a      . 
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Bringing everything to one side, we see that this is: 

   2 0b a b a b a        

or  

  21 0b a      . 

This is zero if and only if   is a root of the polynomial 1 – x – x
2
, which has the roots 

 

 

1 1 4 1 1 1 5

2 1 2

      


 
. 

The root is positive if and only if we choose the 
1 5 5 1

0.6180339887498950
2 2


  

   . Some of you may 

recognize this number: it is the inverse of the golden ratio 
5 1

2



  so 1 5 1

2
  

 .
 
You can check this yourself 

by calculating 

1 5 1 5 1 5 5 5 1 4
1

2 2 4 4
      
      . 

Thus, let 

 

 

1

1

1

2

c b b a

c a b a









  

  
 

If you want to see the approximate numerical values, we have: 

   

 

1

2

0.6180 0.3820

0.6180

c b b a a b a

c a b a

     

  
 

Thus, if you split the interval up into thirds, each additional step reduces the interval size to 66.66% the original 

width but requires two function evaluations. If you split the interval up using the inverse of the golden ratio as 

described above, after the initial step, each subsequent step shirks the interval by 61.80% the original width, and so 

we can perform two steps using two function evaluations to get that the interval has now shrunk to 38.20% of the 

original size. 
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As for the algorithm, given [a, b] and a real-valued function f(x), to find a maximum on that interval: 

1. Calculate and set  1

1c b b a    and  1

2c a b a   . 

2. While b – a > step, 

a. if f(c1) > f(c2), calculate and set in this order: 

 

2

2 1

1

1

b c

c c

c b b a 





  

 

b. otherwise, f(c1) < f(c2), set 
2b c , so calculate and set in this order: 

 

1

1 2

1

2

a c

c c

c a b a 





  

 

3. Return whichever is largest: f(a), f(c1), f(c2) or f(b). 
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Implementation in C++ 
The following is a reasonable implementation of this algorithm in C++: 

#include <utility> 
#include <cassert> 
#include <cmath> 
 
std::pair<double, double> golden_ratio_search( double f( double x ), 
                            double a, double b, 
                            double eps_step ) { 
    assert( b > a ); 
    // Calculate these explicitly to minimize error 
    double const inv_phi{(std::sqrt(5.0) - 1.0)/2.0}; 
 
    double  fa{f( a )}; 
    double  c1{b - inv_phi*(b - a)}; 
    double fc1{f( c1 )}; 
    double  c2{a + inv_phi*(b - a)}; 
    double fc2{f( c2 )}; 
    double  fb{f( b )}; 
 
    while ( (b - a) > eps_step ) { 
        if ( fc1 > fc2 ) { 
              b = c2; 
             fb = fc2; 
             c2 = c1; 
            fc2 = fc1; 
             c1 = b - inv_phi*(b - a); 
            fc1 = f( c1 ); 
        } else if ( fc1 < fc2 ) { 
              a = c1; 
             fa = fc1; 
             c1 = c2; 
            fc1 = fc2; 
             c2 = a + inv_phi*(b - a); 
            fc2 = f( c2 ); 
        } else { 
            assert( false ); 
        } 
    } 
 
    // Return the maximum of f(a), f(c ), f(c ) and f(b) 
    //                                1      2 
 
    if ( (fa > fc1) && (fa > fc2) && (fa > fb) ) { 
        return std::make_pair( a, fa ); 
    } else if ( (fc1 > fc2) && (fc1 > fb) ) { 
        return std::make_pair( c1, fc1 ); 
    } else if (  fc2 > fb ) { 
        return std::make_pair( c2, fc2 ); 
    } else { 
        return std::make_pair( b, fb ); 
    } 
}  
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